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In the present study the existence of multiple three-dimensional double-diffusive
flow patterns in a horizontal rectangular porous cavity of a square cross-section,
having horizontal aspect ratios Ax = Ay = 2 is investigated numerically. Opposing
vertical gradients of temperature and concentration are applied between the two
horizontal walls of the cavity, where the solute gradient is destabilizing against a
stabilizing temperature gradient. All vertical walls are considered to be impermeable
and adiabatic. The Brinkman and Forchheimer terms are included in the momentum
equations where the convective terms are retained. The effect of the buoyancy ratio,
N, thermal Rayleigh number, RaT and Lewis number, Le, on the formation of
multiple flow patterns is investigated over a wide range of parameters. Altogether 36
symmetric flow structures have been identified when each of the parameters N, RaT ,
and Le is varied independently, keeping the others as constants. The results of the
calculations are presented in terms of the average Sherwood number curves consisting
of different solution branches, where transitions between the branches are indicated.
The flow patterns are classified according to their symmetry properties and the type
of symmetries broken or preserved are identified during the bifurcation processes.

1. Introduction
Fluid flow in porous media resulting from the double diffusive effects of temperature

and concentration gradients has been the subject of intensive study because of its
importance in the prediction of groundwater contamination in aquifers, waste and
fertilizer migration in saturated soil, moisture movement through air contained in
fibrous insulations and solute transfer in the mushy layer during the solidification of
binary alloys.

Double-diffusive convection in a fluid layer with vertical temperature and concen-
tration gradients can be broadly categorized as ‘fingering’ or ‘diffusive’. When the
faster diffusing component is stabilizing to the vertical density gradient the system
is in the fingering regime. When the slower diffusing component is stabilizing and
the faster diffusing component destabilizing, the system is in the diffusive regime.
The case of warm salty ground water overlying cold fresh water is an example
where salt fingers can form. Salt fingers transport solute very efficiently vertically
and may be responsible for the contamination of groundwater reservoirs (Imhoff
& Green 1988). Another example of fingering convection is encountered during
the solidification of binary alloys when the mould is cooled from below (Worster
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1986; Emms & Fowler 1994; Anderson & Worster 1995). As the binary alloy solidi-
fies there is rejection of one or other of the components into the melt since such
mixtures do not have a single temperature at which a change of phase occurs,
as can be observed from the solidus and liquidus curves of the phase diagram.
The result is a mushy layer, separating the liquid and solid phases, which can be
considered as a porous medium. If the rejected component is lighter, it will tend
to form a concentration gradient, which will tend to destabilize the density gradi-
ent while the temperature gradient is stabilizing. If the thermal diffusivity is larger
than the mass diffusivity the resulting double-diffusive convection is of the fingering
type.

However, despite its importance, double-diffusive convection in the fingering regime
in porous media has attracted much less attention than its counterpart in the diffusive
regime. Much of the published work regarding double-diffusive convection in porous
media with vertical concentration and density gradients concerns linear stability
analysis. The stability of a horizontal porous layer saturated with a fluid having
a stabilizing solute gradient, which is opposed by a destabilizing thermal gradient
(diffusive regime) was first studied by Nield (1968). Using linear stability analysis he
found that the critical value of the porous thermal Rayleigh number for the onset
of convection is related to the solutal Rayleigh number. An extension of the analysis
of Nield to the fingering regime was carried out by Taunton & Lightfoot (1972).
Rubin (1973) has extended Nield’s analysis to nonlinear salinity profiles. The effect
of such salinity profiles on marginal stability and overstability, as well as on thermal
convection, was investigated. Turbulent effects were included in a later analysis (Rubin
1976) to investigate the contamination of groundwater by saline water in aquifers.
The effects of cross-diffusion produced by simultaneous interference of two transport
processes, e.g. Soret and Dufour effects, on the stability of double-diffusive convection
in a horizontal porous fluid layer bounded by two rigid boundaries were investigated
by Patil & Rudriah (1980), Taslim & Narusawa (1986) and Rudraiah & Malashetty
(1986).

Heat and mass transfer from a horizontal porous layer heated from below was
investigated numerically by Trevisan & Bejan (1987) in the Darcy regime, where
the effects of concentration on the buoyancy were neglected. The scaling laws of the
overall mass transfer rate of the single-cell flow were also determined through a scaling
analysis in the high-Rayleigh-number range. Double-diffusive convection in a porous
square cavity heated from below with opposing vertical temperature and concentration
gradients was investigated numerically by Rosenberg & Spera (1992) in the diffusive
regime for a variety of initial salinity and boundary conditions. It was shown that flow
dynamics depend strongly on buoyancy ratio. A mixed finite-difference and Galerkin
method is used by Chen & Chen (1993) to study the double-diffusive convection
in a horizontal porous layer in the fingering regime. The Darcy equation, including
Brinkman and Forchheimer terms, was used for the momentum equations. The range
of parameters in which the flow is steady, periodic or unsteady has been identified in
terms of the porous thermal and solutal Rayleigh numbers.

Anisotropic thermoconvective effects in the double-diffusive convection in porous
media with vertical temperature and concentration gradients were also studied. The
effect of anisotropy of the porous layer on the marginal stability and on the initiation
of salt fingers was studied by Tyvand (1980). It has been found that anisotropy may
or may not favour salt fingers depending on a dimensionless diffusion parameter
r = (α1/D1)/(α3/D3), where α1/D1 is the effective thermal diffusivity/solutal diffusivity
ratio of the porous medium in the horizontal direction and α3/D3 is the corresponding
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ratio in the vertical direction. Anisotropy favours salt fingers if r > 1. Using a linear
stability analysis Malashetty (1993) determined the effect of anisotropic thermocon-
vective currents on the critical Rayleigh number for both marginal and overstable
motions in a horizontal porous layer saturated with a binary mixture. The purpose
of the study of Zhao, Mülhaus & Hobbs (1998) was the investigation of the effect
of geological inhomogeneity on the steady state heat and mineral transfer where a
fluid saturated medium, heated from below, was used as a model. It has been found
that inhomogeneity in permeability and thermal conductivity effects the pore–fluid
convective flow significantly.

A linear stability analysis was carried out by Nield, Manole & Lage (1993) to
investigate convection in a horizontal porous layer subjected to thermal and solutal
gradients inclined to the vertical. The orientation of the preferred mode and other
critical quantities were determined for representative parameter values. The preferred
mode can be longitudinal, transverse or oblique, which refer to the orientation of the
convective roll axes.

A few experimental results have also been reported concerning double-diffusive
convection in porous media with vertical temperature and concentration gradients.
Griffiths (1981) used a Hele-Shaw cell and a sand tank model to study the double-
diffusive convection in a horizontal porous layer. The presence of a diffusive interface
in the cell was used to explain the geothermal system in the Wairakei geothermal
fields of New Zealand. Imhoff & Green (1988) used a sand-tank and the salt–sugar
system to determine if double-diffusive groundwater fingers can form in a saturated
porous medium. Their measurements indicate that double-diffusive groundwater fin-
gers can transport solutes at rates of as much as two orders of magnitude larger
than those associated with molecular diffusion in motionless groundwater. Murray &
Chen (1989) performed experiments to study double-diffusive convection in a fluid
saturated porous medium contained in a box heated from below. The temperature
measurements in the longitudinal direction indicated a three-dimensional convection
pattern when the porous medium was saturated with a stabilizing salinity gradient,
whereas two-dimensional rolls were observed for single-component convection in the
same apparatus. They also observed a hysteresis loop in the heat flux curve upon
reducing the temperature difference from supercritical to subcritical values, owing to
the existence of subcritical regimes.

Studies on double-diffusive convection in tilted porous cavities include that of
Mamou, Vasseur & Bilgen (1998) and Karimi-Fard, Charrier-Mojtabi & Mojtabi
(1999). The critical stability of the inclined system, including the horizontal position,
was investigated (Mamou et al. 1998) in terms of the inclination angle by a linear
stability analysis based on Galerkin and finite-element methods for opposing but
equal thermal and solutal gradients. Their results indicate the occurrence of multiple
solutions in the supercritical regime for a given range of governing parameters.
Karimi-Fard et al. (1999), using the linear stability analysis, studied the onset of
double-diffusive convection in a tilted rectangular cavity, filled with a porous medium
and saturated by a binary fluid. The critical Rayleigh number for the onset of
stationary and oscillatory convection was determined as a function of porosity and
Lewis number for different tilt angles, including the horizontal configuration. To
confirm the results obtained with the linear stability analysis they also carried out
numerical simulations using the finite-volume method. The numerical simulations
show multiple subcritical solutions.

The double diffusive convection in a horizontal porous enclosure, subject to
vertical gradients of temperature and concentration, was analysed by Mamou &
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Vasseur (1999). Analytical solutions were obtained using both linear and non-
linear perturbation theories and the parallel flow approximation based on the
Darcy model for different boundary conditions. Four different regimes were found
to exist and their domain of existence was identified. The results were verified
numerically by using a finite-element method. Their numerical results show the
existence of multiple solutions for the case of opposing flows in the overstable
regime.

All of these theoretical and numerical studies are limited by the two-dimensional
flow assumption and nothing can be inferred about the three-dimensional flow pat-
terns. To the best of my knowledge, three-dimensional numerical studies of double-
diffusive convection in porous cavities with vertical gradients of temperature and
concentration have not been reported prior to the present work. Studies on horizon-
tal porous enclosures saturated with a single fluid and heated from below (Straus
& Schubert 1979; Kimura, Schubert & Straus 1986) indicate that the flow is three-
dimensional. A similar behaviour may be expected when the porous medium is
saturated by a binary fluid with vertical gradients of temperature and concentration.
In fact, the rather limited temperature profile measurements reported in the ex-
perimental study of Murray & Chen (1989) on double-diffusive convection in a
rectangular enclosure, with vertical gradients of temperature and concentration, point
out the formation of a three-dimensional flow structure. In the present study, the
existence of multiple three-dimensional double-diffusive flow patterns in a horizontal
rectangular porous cavity with opposing gradients of temperature and concentration
in the fingering regime, where the solute gradient is destabilizing against a stabilizing
temperature gradient, is investigated. The main concern here is about the buoyancy-
driven convection in the mushy layer formed when a binary alloy is cooled from below
as a result of rejection of the lighter component of the mixture upon solidification.
The effect of the thermal Rayleigh number, the buoyancy ratio and the Lewis number
on the domain of existence of multiple flow patterns are investigated numerically. For
the case of a stabilizing solute gradient destabilized by a temperature gradient, the
flow transitions and the range of existence of the flow patterns will be different and
requires a separate study.

2. Mathematical formulation
The physical model considered in the present study is a horizontal rectangu-

lar porous cavity with a square cross-section, having aspect ratios Ax = Lx/H = 2,
Ay = Ly/H = 2 (figure 1) and saturated with a binary fluid. The system is cooled
from below where the bottom wall is at a uniform temperature T2, while the top
wall is at a uniform but higher temperature T1. The resulting stable density gradient
is destabilized by a vertical concentration gradient by applying a uniform concen-
tration C1 of the lighter component of the binary fluid at the bottom wall, while
the top wall is maintained at a lower concentration C2. Zero heat and mass fluxes
are imposed on the vertical sidewalls. The binary fluid is assumed to be Newtonian,
incompressible and to satisfy the Boussinesq approximation. The porous medium is
supposed to be isotropic, homogenous and in thermodynamic equilibrium with the
fluid. The Dufour effect is negligible for liquids (Taslim & Narusawa 1986) and the
Soret effect decreases at high Lewis numbers and at low permeabilities in a porous
medium (Taslim & Narusawa 1986; Rudraiah & Malashetty 1986). In this study, the
Soret and Dufour effects are assumed to be negligible. The fluid density is assumed
to be constant, except in the driving term of the Navier–Stokes equations, where it
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Figure 1. Physical model and the coordinate system.

varies linearly with the local temperature and solute mass fraction as

ρ = ρ2[1− βT (T − T2)− βC(C − C2)], (1)

where

βT = − 1

ρ2

[
∂ρ

∂T

]
C

, βC = − 1

ρ2

[
∂ρ

∂C

]
T

, (2)

with βT > 0 and βC > 0. The thermophysical properties of the fluid are taken
as constant and they are estimated at a reference temperature T2 and solute
mass fraction C2. Using the following dimensionless variables: X = x/H , Y = y/H ,
Z = z/H , V = vH/ν, P = pH2/ρν2, Θ = (T −T2)/(T1−T2), Φ = (C−C2)/(C1−C2),
t = t∗/(H2/ν), where ν is the kinematic viscosity of the fluid, v is the volume averaged
velocity vector, p is the pressure and t∗ is time, the equations governing the conser-
vation of mass, momentum, energy and species concentration in non-dimensional
form, which include the Forchheimer and Brinkman modifications can be written as,

∇ · V = 0, (3)

1

ε

∂V

∂t
+

1

ε2
(V ·∇)V = −∇P+Λ∇2V +

RaT

Pr
(Θ+NΦ)k− 1

Da
V − 1.75√

150

|V |√
Da

V

ε3/2
, (4)

σ
∂Θ

∂t
+ V · ∇Θ =

1

Pr
λ∇2Θ, (5)

ε
∂Φ

∂t
+ V · ∇Φ =

1

LePr
∇2Φ, (6)

where Le = α/D is the Lewis number RaT = (gβT∆TH3)/να the thermal Rayleigh
number, N = RaC/(RaTLe) the buoyancy ratio, RaC = (gβC∆CH3)/νD the solutal
Rayleigh number, ∆T = T1 − T2, ∆C = C1 − C2, Da = K/H2 the Darcy number,
Pr = ν/α the Prandtl number and α = k/ρ2Cp is the effective thermal diffusivity. The
parameters K and ε are the permeability and porosity of the porous medium, g, k, Cp,
D and k, refer to the acceleration due to gravity, unit vector in the vertical direction,
specific heat, molecular diffusivity of the fluid and effective thermal conductivity,
respectively. The Brinkman term is included in the momentum equation (4) to account
for the viscous stresses adjacent to the bounding walls. The parameter Λ = µ′/µ is the
ratio of the effective viscosity in the Brinkman term to fluid viscosity. The variation
in Λ is not fully understood and most of the works on non-Darcy formulation
consider Λ = 1. In the momentum equation, the last term is the Forchheimer term
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and represents the nonlinear drag effect due to the solid matrix, where Ergun’s
(1952) correlation is used with the total velocity vector |V | = (U2 + V 2 + W 2)0.5.
Lauriat & Prasad (1989) point out that at least for the Ergun model, the Forchheimer
term becomes important long before the contribution of the Brinkman term is of
any significance for natural convection flows and that any consideration of non-
Darcy effects requires both the Forchheimer and Brinkman terms to be considered
simultaneously. Even though the contribution of the advection terms is small for a
porous medium they are included in the model to handle all possible situations. Also,
for smooth development of the boundary layer near the walls inclusion of advection
terms is necessary (Vafai & Kim 1995). λ = km/kf is the ratio of thermal conductivities
of the porous medium and the fluid and σ = [ε(ρcp)f + (1 − ε)(ρcp)s]/(ρcp)f =
(ρcp)m/(ρcp)f is the heat capacity ratio.

The boundary conditions used are:

U = V = W =
∂Θ

∂X
=
∂Φ

∂X
= 0 for X = 0, Ax, (7)

U = V = W =
∂Θ

∂Y
=
∂Φ

∂Y
= 0 for Y = 0, Ay, (8)

U = V = W = 0, Θ = 0, Φ = 1 for Z = 0, (9)

U = V = W = 0, Θ = 1, Φ = 0 for Z = 1, (10)

where U, V and W are the x, y and z components of the velocity vector, respectively.
The average heat and mass fluxes at the top wall are given in the non-dimensional
terms by Nusselt and Sherwood numbers as

Nuave =

∫ Ay

0

∫ Ax

0

[
∂Θ

∂Z

]
Z=1

dX dY , Shave =

∫ Ay

0

∫ Ax

0

[
∂Φ

∂Z

]
Z=1

dX dY . (11)

3. Numerical method
The governing equations (3)–(6) are solved numerically using the control volume

formulation with staggered, non-uniform grids. Since the details of the present numeri-
cal procedure are discussed elsewhere (Sezai & Mohamad 1999) only the main steps
are presented here. The QUICK scheme is used in approximating the advection terms
together with ULTRA-SHARP as the flux limiter (Leonard & Mokhtari 1990). The
SIMPLEC algorithm (Van Doormaal & Raithby 1984) is used to couple momentum
and continuity equations. The momentum equations are solved by using the strongly
implicit procedure (SIP) of Stone (1968). The pressure correction equation is solved
iteratively by applying the conjugate gradient (CG) method (Hackbush 1994) and the
energy and species concentration equations are solved iteratively by the Bi-CGSTAB
method (Van der Vorst 1992). SSOR preconditioning (Hackbush 1994) is used for
accelerating the convergence rates of both CG and Bi-CGSTAB methods.

To avoid the excessively high computer times inherent in the solution of three-
dimensional natural convection problems, a full approximation storage (FAS) full
multigrid (FMG) method (Hortmann, Peric & Scheuerer 1990) is used to solve
the problem, which removes a wider spectrum of wavelengths more efficiently than
single-grid methods. The equations are solved by a four-level fixed V-cycle procedure
(Hortmann et al. 1990; Shyy & Sun 1993). In this method, the solution obtained on
a coarse grid is transferred to the next finer grid and the process is repeated until the
finest grid level is reached. Then, the residuals are transferred to the next coarser grid,
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where the fine-grid solution is corrected. The process is repeated down to the coarsest
grid level. The whole process is repeated until a converged solution is obtained on the
finest grid level. 96× 96× 48 control volumes are used on the finest level for all cases
except for the time-dependent solutions where 48× 48× 24 control volumes are used.
The time stepping has been realized with the second-order, fully implicit, backward
Euler scheme.

The computer code has been validated for various cases and the results published
elsewhere (Sezai & Mohamad 1999, 2000).

4. Results and discussion
The numerical model is used to investigate double-diffusive fingering convection

in a horizontal porous enclosure having aspect ratios Ax = Ay = 2 and subjected to
vertical but opposing gradients of temperature and concentration. Since concentration
refers to the lighter component of the binary mixture (βC > 0) then, with higher
concentration at the bottom, RaC is positive. Since βT is positive, then RaT is also
positive, resulting in a positive N value for the given boundary conditions. Thus, the
temperature gradient is stabilizing, whereas the concentration gradient is destabilizing.

Simulations were carried out starting with the diffusion solution and increasing
either N, Ra∗ or Le to a point beyond which unsteady flow starts. The effect of
the buoyancy ratio is investigated by varying N between 0.5 and 4.5 with Ra∗ held
constant at 10 and Le at 10. The porous thermal Rayleigh number Ra∗ = RaTDa
is varied between 10 and 100, while N is fixed at 0.5 and Le at 10. Furthermore,
the effect of the Lewis number is investigated by varying Le between 10 and 240
for Ra∗ = 5 and N = 0.5. The Prandtl number of the fluid is fixed at Pr = 10. The
thermal properties of the solid porous matrix and the fluid have been taken to be
identical so that λ = 1 and σ = 1. The porosity of the medium is assumed to be
uniform throughout the domain and to remain constant with time at ε = 0.6. The
remaining properties of the porous medium are set as Λ = 1 and Da = 10−5. Both
time-dependent and steady solutions were obtained in the present investigation. To
speed up convergence, steady solutions on a solution branch, that have the same flow
structure, have been obtained by switching off the time derivative terms in equations
(4)–(6) and the resulting steady-state equations have been solved by using the results
obtained from the previous run as input for the next run. However, for transitions
from one solution branch to the other, or for cases where convergence problems
were met, the full time-dependent equations were used. The transitions can involve a
change in the steady flow patterns, a change from steady to unsteady flow patterns
or a change from unsteady to steady flow patterns.

4.1. Symmetry properties

The nonlinear differential equations (3)–(6) together with the boundary conditions
(7)–(10) admit solutions with some symmetries. Before presenting the results it is worth
summarizing the symmetry properties of the structures obtained and classifying them
in terms of symmetry groups.

4.1.1. Plane symmetries

(i ) Plane symmetry sy with respect to Y = 1:

syQ = Q, (12)

where Q represents the solution (U, V , W , Θ, Φ) and sy is the mapping which produces
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the mirror image of the flow field, together with the temperature and concentration
fields about the Y = 1 plane with by definition

sy : (X,Y , Z, t)→ (X, 2− Y ,Z, t), (U,V ,W ,Θ,Φ)→ (U,−V ,W ,Θ,Φ).

If Q is a solution of the problem, then syQ is also a solution.
(ii ) Plane symmetry sx with respect to X = 1:

sxQ = Q, (13)

with, by definition,

sx : (X,Y , Z, t)→ (2−X,Y , Z, t), (U,V ,W ,Θ,Φ)→ (−U,V ,W ,Θ,Φ).

In cases where the solution is plane symmetric, the velocity component perpendicular
to the symmetry plane is zero on that plane. For example, if the solution has plane
symmetry sx with respect to the X = 1 plane, then U = 0 on plane X = 1.

(iii ) Plane symmetry sd with respect to the diagonal plane X = Y :

sdQ = Q, (14)

where sd is the mapping which produces a mirror image of the T , C and the flow
fields about the X = Y plane with by definition

sd : (X,Y , Z, t)→ (Y ,X, Z, t), (U,V ,W ,Θ,Φ)→ (V ,U,W ,Θ,Φ).

(iv ) Plane symmetry sd′ with respect to the diagonal plane X = −Y :

sd′Q = Q (15)

where sd′ is the mapping which produces a mirror image of the T , C and the flow
fields about the X = −Y plane with, by definition,

sd′ : (X,Y , Z, t)→ (2− Y , 2−X,Z, t), (U,V ,W ,Θ,Φ)→ (−V ,−U,W,Θ,Φ).

4.1.2. Rotational symmetries

(i ) Rotational symmetry r2 with respect to a vertical axis at X = 1, Y = 1:

r2Q = Q, (16)

where r is the mapping which consists of a rotation of 90◦ with respect to the vertical
axis (parallel to the z-axis) at X = 1, Y = 1. Here, r2 is shorthand for rr which means
applying r twice and is equivalent to a rotation of 180◦. That is,

r2 : (X,Y , Z, t)→ (2−X, 2− Y ,Z, t), (U,V ,W ,Θ,Φ)→ (−U,−V ,W ,Θ,Φ).

(ii ) Rotational symmetry r2
y with respect to the horizontal axis at X = 1, Z = 0.5:

r2
yQ = Q, (17)

where r2
y is the mapping which consists of a rotation of 180◦ with respect to the

horizontal axis at X = 1, Z = 0.5, with, by definition,

r2
y : (X,Y , Z, t)→ (2−X,Y , 1−Z, t), (U,V ,W ,Θ,Φ)→ (−U,V ,−W, 1−Θ, 1−Φ).

(iii ) Translational symmetry in space, τ:

τQ = Q, (18)

with

τ : (X,Y , Z, t)→ (X + λx, Y + λy, Z + λz, t), (U,V ,W ,Θ,Φ)→ (U,V ,W ,Θ,Φ),
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which moves the pattern by distances λx, λy and λz in the x-, y- and z-directions,
respectively. A single symmetry operation such as r2 generates the symmetry group
{e, r2}, where e is the identity. This group is called Z2. Similarly, single plane reflections
generate the symmetry groups such as {e, sx}, {e, sy}, {e, sd} and {e, sd′ }, which are all
isomorphic to Z2. We shall use the name Z2 to describe the structure of all these
groups. A rectangle has three symmetries: 180◦ rotation r2, as well as plane symmetries
sx and sy . So, the symmetry group of a rectangle is

{e, sx, sy, r2}, (19)

and is called D2. Applying the symmetry operations sx and sy consecutively is equiv-
alent to 180◦ rotation about a vertical axis. That is, r2 = sxsy = sysx. The group D2

has three subgroups {e, sx}, {e, sy} and {e, r2}. Any two of these three Z2 subgroups
can be combined to form D2, and is written as D2 = Z2 × Z2. In general, a group
G with elements gi contains a subgroup H with elements hi if all products hihj are
elements of both H and G (Armstrong 1988).

A square has four more symmetries: sd and sd′ corresponding to reflections about
the two diagonals, and r and r3 corresponding to 90◦ and 270◦ rotations about the
vertical centreline. So the symmetry group of a square is

{e, sx, sy, sd, sd′ , r, r2, r3}, (20)

and is called D4. The cyclic group Z4 given by {e, r, r2, r3} is a subgroup of D4.
In general, Zn can be considered to be the rotational symmetry group of an n-gon,

without reflections and has n-elements. On the other hand, the dihedral group Dn
contains the rotational symmetries of Zn combined with a reflection and has 2n
elements. Similarly, the symmetry group of a rectangular prism is D2h = D2 ×Z2 and
has 8 elements. The symmetry group of a square prism is D4h = D4 × Z2 and has 16
elements. The symbols Z2, D2, D4, D4h etc. will also be used for any groups that are
isomorphic to these groups, regardless of what physical operation the elements of the
group represent.

The initial motionless diffusion state has D4 symmetry owing to the square horizon-
tal cross-section of the domain, but it is also invariant by any horizontal translation,
since both temperature and concentration are independent of the x- and y-directions,
but depend only on z. The patterns bifurcating from this solution will have sym-
metries that form a subgroup of D4h, which is the product of D4 and this group of
translations. The symmetries can be broken through bifurcations. There is a close
relationship between the change of symmetry and the nature of the bifurcation. A
bifurcation from one structure to the other is a pitchfork type if one of the symmetries
is broken and it is transcritical if the symmetries are preserved after bifurcation. In the
present study, a total of 36 symmetric flow structures have been obtained at steady
state.

Figure 2 illustrates the symmetric flow structures and three of the non-symmetric
structures found. In the figure, the local distributions of the Sherwood number on
the top plate, the projection of the flow lines on a horizontal plane at Z = 0.9, the
projection of flow lines on the mid (x, z)- and the mid (y, z)-planes are displayed.
The projections of flow lines on a particular plane are obtained from the in-plane
components of the velocity vectors on that plane. For example, the projection of flow
lines on an (x, y)-plane is obtained by using the U and V components of velocities on
that plane. The locations of maximum values of the local Sherwood number indicate
impingement regions caused by the flow coming from the bottom whereas minimum
values indicate stagnant regions of boundary-layer development for the fluid leaving
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Symmetry
Pattern group

S1–S4 D4

S5 D4h

S6–S9 D2

S10–S11 D2h

S12–S31 Z2

S32–S33 Z2 × Z2 = D2

S34 Z2 × O2

S35–S36 D2 × O2

S37–S39 NS

Table 1. Symmetry groups.

the top plate. The corresponding Nusselt number distributions are quite similar to
the local Sherwood number distributions and for this reason they are not included
in the figure.

The symmetry group of each flow pattern is given in table 1. Structures S1–S4 have
D4 symmetry. Structure S5 also has D4 symmetry, but is in addition invariant under
the translational symmetry τxy : (X,Y , Z, t)→ (X + 1

2
Ax, Y + 1

2
Ax, Z, t), which moves

the pattern by 1
2
Ax in the x- and y-directions taking one upward plume to the other.

Combining the rotations and reflections of D4 with the translation τ (which generates
the group Z2) results in the group D4h.

Structures S6–S9 belong to the D2 group having symmetries {e, sd, sd′ , r}. Structure
S10 also has D2 symmetry, but in addition it is invariant under the translational
symmetry τx : (X,Y , Z, t)→ (X + 1

2
Ax, Y , Z, t), that moves the pattern by 1

2
Ax in the

x-direction and thus belongs to group D2h. The flow pattern S11 has D2 symmetry
{e, sd, sd′ , r}, but it is also invariant after a 180◦ rotation r2

y about a horizontal axis
passing through the centre and thus belongs to group D2 × Z2 = D2h. Structures
S12–S31 belong to the Z2 group. Of these structures, S12–S19 have plane symmetries
{e, sx} or {e, sy}. The two are equivalent since one is a 90◦ rotated version of the other.
The other structures in the Z2 group (S20–S31) have single diagonal symmetries
{e, sd} or {e, sd′ }. The flow structures S32 and S33 also have Z2 symmetry, but in
addition they also have translation symmetry τx : (X,Y , Z, t) → (X + 1

2
Ax, Y , Z, t),

which moves the pattern by 1
2
Ax in the x-direction and thus they belong to symmetry

group Z2 × Z2 = D2.
The pattern consisting of two rolls in S34 together with its temperature and

concentration profiles is approximately two-dimensional disregarding the endwall
effects near Y = 0 and Y = 2. Then, structure S34 is unchanged after reflecting in
the y-direction and after translating by any amount in the same direction yielding the
symmetry group O(2) of a circle under rotations and reflections. That is, in the O2

group the pattern is unchanged under the reflection sy : (X,Y , Z, t)→ (X, 2−Y ,Z, t)
and translation τy : (X,Y , Z, t) → (X,Y + λy, Z, t). The rolls are also unchanged
after reflecting in the x-direction, so the symmetry group S34 is Z2 × O(2). Similarly,
approximately two-dimensional four rolls in S35 have O(2) symmetry and are also
invariant under reflection sy in the y-direction. In addition, this pattern is invariant
under the translation symmetry τy : (X,Y , Z, t) → (X,Y + 1

2
Ay, Z, t), which moves

the pattern by 1
2
Ay in the y-direction, so the symmetry group of the four rolls is

Z(2)× Z(2)× O(2) = D2 × O(2). The three rolls in S36 have O(2) symmetry and the
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Figure 3. Variations of average Sherwood number with buoyancy ratio. Ra∗ = 10; Le = 10.

pattern is also invariant under the translation symmetry which moves the pattern
by 2

3
Ay in the y-direction. In addition, the rolls have rotational symmetry rx around

the horizontal axis at Y = 1, Z = 0.5, so they belong to group Z2 × Z2 × O(2).
Non-symmetric flow structures have also been obtained of which three are shown in
figure 2 named as S37, S38 and S39.

The topologies of all structures, the flow transitions between them and the corre-
sponding mass transfer characteristics are discussed in the following subsections.

4.1.3. Effect of buoyancy ratio

Figure 3 depicts the variation of the average Sherwood number with the buoyancy
ratio for Ra∗ = 10. The average Nusselt number changes between 1.0 and 1.3 in the
range of buoyancy ratios investigated, indicating a diffusion dominated heat transfer.
The transitions from one structure to the other are shown by arrows. Figure 4 shows
the transitions between the different flow structures as a function of the buoyancy
ratio.

Starting from diffusive temperature and concentration profiles as initial conditions,
the buoyancy ratio is increased in steps using the results from the previous run as
input for the next run. At low buoyancy ratios, the trivial (diffusive) solution is
stable and is the only solution for N < 0.52. At N = 0.52, the system undergoes a
supercritical bifurcation to the two-roll structure S34, where no hysteresis phenomena
are observed with decreasing buoyancy ratios. Using the results of the linear stability
analysis of Nield (1968) for a horizontal layer of saturated porous medium, the
critical value of the buoyancy ratio for the onset of convection can be determined
from N = (Ra∗+ 4π2)/(Ra∗Le). For Ra∗ = 10 and Le = 10, the critical value of N for
a horizontal porous layer is predicted to be 0.495. The value of the critical buoyancy
ratio found from the present numerical simulation is slightly above the value pedicted
for a horizontal porous layer. Structure S34 has Z2 × O2 symmetry and consists of
two horizontal rolls, which are almost two-dimensional with three-dimensional effects
noticeable near the endwalls. The orientation of the rolls may be along the x- or
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Figure 4. Schematic diagram of the flow transitions as a function of buoyancy ratio.

y-direction and both cases are denoted by S34. This is the form of the structure found
in the two-dimensional study of Chen & Chen (1993) for an enclosure of aspect
ratio 2. The single-roll structure found in the two-dimensional study of Mamou &
Vasseur (1999) for enclosures having aspect ratio greater than one, could not be
obtained in the present study.

Structure S34 is stable up to N = 1.7 and depending on the time step used, it
bifurcates to either the three-roll structure S36, having Z2 × Z2 ×O2 symmetry, or to
structure S12, where O2 symmetry is completely lost and only {e, sx} = Z2 symmetry
is retained. Upon increasing N further, S36 bifurcates to the upper branch S30, where
the plane symmetry sx is replaced by the diagonal plane symmetry sd. Structures on
this branch produce four-roll cells of which two are of equal size and the other two are
different. The rising high-concentration fluids produce four maxima in the Sherwood
number distribution at the top plate. Structure S30 is stable at high buoyancy ratios
up to 4.5, which is the highest N value investigated. When N is decreased from 2.2 to
2.0 this structure evolves back to S36 forming a hysteresis loop.

The diagonally aligned roll structure S20 is characterized by a rising high-concentra-
tion fluid displaced from the centreline and has {e, sd} = Z2 symmetry. This structure
is stable up to N = 1.5, where it bifurcates to the two-roll structure S34 having
Z2 × O2 symmetry as N is increased further. At higher buoyancy ratios, S34 may
jump to either the three-roll structure S36 or to Z2 symmetric structure S12 by losing
its O2 symmetry. Structure S12, is three-dimensional with three ascending currents
of high concentration fluid; one of them located near the centre and two near the
corners (figure 2). These currents impinge at the top plate causing three corresponding
maxima in the Sherwood number distribution. Structure S12 bifurcates to a periodic
state through a Hopf bifurcation at N ≈ 2.5, where the plane symmetry is preserved
during the oscillations. Figure 5 depicts the time variation of the average Sherwood
number and its time mean value at the top plate and the power spectra of its
deviation from the time average value when N is increased from 2.0 to 2.5 and using
the steady-flow structure S12 as the initial condition.

As N is increased to 3.0, the plane symmetry is broken by small-scale oscillations.
The power spectrum of the deviation of the average Sherwood number from its time
average value is shown in figure 6 for N = 3.0. The power spectrum reveals two
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Figure 5. (a) Time variation of the average Sherwood number at the top plate and (b) the power
spectra of its deviation from time mean value for the transition of structure S12 from steady to
unsteady flow.

independent fundamental frequencies. In the classification scheme of Gollub & Ben-
son (1980), a quasi-periodic oscillatory state with two fundamental incommensurate
frequencies is denoted as quasi-periodic and if the frequencies are in a rational ratio
then the state is periodic. With this classification, the flow in figure 6 is quasi-periodic.
Increasing the buoyancy ratio to 3.5, with the solution at N = 3.0 as initial conditions,
results in the loss of quasi-periodicity, as shown by the Sherwood number variations
in figure 7. The strong broadband noise in the power spectrum suggests that the flow
is in a chaotic regime. However, when N is increased further to 4.0 the flow evolves
to the steady, toroidal roll structure S2 which belongs to {e, sx, sy, sd, sd′ , r, r2, r3} = D4

symmetry group, or to the branch of solutions S30 having a diagonal plane {e, sd} = Z2

symmetry. Structure S2 becomes unstable for N < 3.25, where it undergoes a trans-
critical bifurcation to another D4 group toroidal roll structure S1, preserving all of
its symmetries. As N is reduced further, it bifurcates to S7, losing its sx and sy
symmetries, and retains only the {e, sd, sd′ , r2} = D2 symmetry.

4.1.4. Effect of porous thermal Rayleigh number

The variations of the average Sherwood number with porous thermal Rayleigh
number is given in figure 8, for N = 0.5 and Le = 10. A schematic diagram showing
the transitions between the flow structures is given in figure 9. Starting with the
diffusive solution as initial conditions, where the temperature gradient is positive
and the concentration gradient is negative, convection starts at Ra∗ ≈ 11. Using
Nield’s (1968) criteria, the critical value of porous thermal Rayleigh number for
a horizontal porous layer can be found from Ra∗ = 4π2/(NLe− 1), which yields a
value of 9.870. The critical value found in the present study for the three-dimensional
cavity is slightly higher than this value. At low Rayleigh numbers, the trivial diffusive
solution is stable and is the only solution for Ra∗ < 11. At this point, the system
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Figure 6. (a) Time variation of the average Sherwood number and (b) the power spectra of its
deviation from the time mean value for N = 3.0 for structure S12.

undergoes a transcritical bifurcation to structure S3, having D4 symmetry. For this
solution, the motion sets in, taking the form of a toroidal roll in which the fluid
rises from the centre. A toroidal roll may also form, where the descending fluid
is at the centre, depending on the disturbances induced by the step size used in
increasing the buoyancy ratio. Both structures are dynamically equivalent and are
named S3. The flow pattern S3 has also been identified in a stratified fluid layer
in a magnetic field, with periodic and free boundary conditions on the vertical and
horizontal boundaries, respectively (Rucklidge et al. 2000). However, this structure is
stable in a very limited range and at Ra∗ = 12 it undergoes a pitchfork bifurcation
to the two-dimensional structure S34, having Z2 × O2 symmetry, where the diagonal
plane symmetries sd and sd′ are broken. As Ra∗ is increased, structure S34 bifurcates
to structure S36, having Z2 × Z2 × O2 symmetry and then to structure S30 having a
single diagonal plane symmetry {e, sd} = Z2. At a higher thermal Rayleigh number,
S30 bifurcates to either structure S5 having D4h symmetry, or to S10 having D2h

symmetry.
Structure S31 with a single diagonal symmetry sd′ , has the maximum Sherwood

number at the highest thermal Rayleigh number investigated. However this structure
is unstable for Ra∗ < 100 and as Ra∗ is decreased from 100 to 90 it evolves to
non-symmetric structures S38 and S39. Depending on the time step used in the
simulations, it may also evolve to structure S32 having a plane and a translational
symmetry along the x-direction, (Z2 × Z2 symmetry), or to structure S18 having Z2

symmetry. At this Rayleigh number, the non-symmetric structure S38 contains very
small-amplitude (1.5% of the average) periodic oscillations of average Sherwood
number, but becomes steady at Ra∗ = 80 and 70 and evolves to structure S5 having
D4h symmetry as Ra∗ is further decreased to 60. However, this structure is unstable
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at lower Rayleigh numbers and evolves to a non-symmetric structure, when Ra∗ is
decreased from 60 to 50.

It is interesting that for increasing thermal Rayleigh number all transitions are to
a higher branch of solutions, where the average Sherwood number is higher. Based
on this observation we might think that the evolution of the flow structures is such
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that the convective system adopts the configuration that maximizes solute transport.
A similar argument was put forward by Malkus (1954) that the flow will evolve to
a steady configuration that maximizes the heat transport. However, the results of
Straus & Schubert (1979) on three-dimensional convection in a porous cavity heated
from below with no double diffusive effects and that of Graham & Steen (1994) on
two-dimensional convection in a porous cavity, do not support the maximal heat
transport idea. They found solutions where the Nusselt number can actually decrease
with increasing Rayleigh number. A similar observation was made in this study on
solute transport for decreasing Ra∗, where the transitions are expected to proceed
towards lower solution branches in the Sh versus Ra∗ diagram. A counter example to
this is found for the transition of non-symmetric structure S39. When Ra∗ is decreased
from 90 to 80, structure S39 evolves to structure S10 which is on a higher solution
branch, corresponding to higher average Sherwood numbers.

Structure S1 with D4 symmetry has the maximum average Sherwood number be-
tween 30 6 Ra∗ 6 50. At higher porous thermal Rayleigh numbers, structure S11
with D2 × Z2 = D2h symmetry has the maximum average Sherwood number until
Ra∗ = 90 and at Ra∗ = 100 structure S31 takes over. The average Nusselt number
is close to unity and varies between 1.0 and 1.12 for all thermal Rayleigh numbers
investigated, indicating a diffusion-dominated heat transfer. Structures S30, S10, S31,
S5, S33, S18 and S19 are all similar, differing only by the number of rolls. Struc-
tures having a smaller number of rolls are generally stable at lower Ra∗ values,
with the region of stability shifting to higher Ra∗ values as the number of rolls
increases.
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The two-dimensional four-roll structure S35 has the least mass transfer capacity
among all structures in the range 30 6 Ra∗ 6 60, as reflected by the low Shave values
in figure 8. However, this is not a rule for two-dimensional structures. For example, the
two-dimensional two-roll structure S34 has the highest Shave value among all structures
at Ra∗ = 20. On the other hand, at a higher Ra∗ value of 30 the three-dimensional
structure S1 has a higher average Sherwood number than S34. The structure having
the maximum solute transport capacity may be either two-dimensional or three-
dimensional depending on the thermal Rayleigh number range. A similar behaviour
exists for heat transfer in the case of pure Rayleigh–Bénard convection in a porous
cubic enclosure (Straus & Schubert 1979). Also, it has been found that steady two-
dimensional patterns are stable at rather low thermal Rayleigh numbers, and, for
Ra∗ > 60, all structures are three-dimensional.

When Ra∗ is increased from 60 to 70, the two-dimensional structure S35 bifurcates
to the three-dimensional structure S10. The variation of the average Sherwood number
during transition from S35 to S10 is shown in figure 10. The snapshots of flowlines on
different planes and isolines of T , C and dC/dt during this transition are illustrated
in figure 11. The original flow pattern consists of two-dimensional roll cells whose
axes of rotation are parallel to the y-axis. At the initial stages of the bifurcation
process, dipole vortices start forming at the top and bottom of the transverse plane,
as observed from projection of flow lines on the (y, z)-plane at X = 0.8. The driving
mechanism of this process is the local variation in the concentration field. The
contour plot of the rate of change of the concentration field at the bottom row at
t = 4 shows that alternating positive and negative variations in the concentration of
the fluid occur at locations of the dipole vortices. The fluid in the high concentration
regions tends to rise upward, opposing the main flow direction as a result of which
a dipolar vortex structure forms. The vortices grow in size and eventually transform
into toroidal roll cells. The isotherms are almost parallel to the horizontal axis
indicating that the temperature field remain almost unaffected by the flow during
this process so that the heat transfer is purely conductive. On the other hand, solute
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Figure 12. (a) Time variation of the average Sherwood number and (b) the power spectra of its
deviation from the time mean value for Ra∗ = 80, starting from the steady flow structure S27 at
Ra∗ = 70 (N = 0.5, Le = 10).

transport is mainly by convection since species diffusion is negligible at high Lewis
numbers.

Structure S1 having {e, sx, sy, sd, sd′ , r, r2, r3} = D4 symmetry undergoes a pitchfork
bifurcation to structure S27 when Ra∗ is increased from 60 to 70, where six of
its symmetries are broken with only the {e, sd} = Z2 being retained. Small-amplitude
oscillations are set in the basic flow when Ra∗ is increased to 80 of which the temporal
variation of the average Sherwood number together with its power spectra are given
in figure 12. The amplitude of oscillations is about 0.2% of the average value. The
flow is periodic with a dominant frequency of 0.0927 and its harmonics. Reversion
back to steady flow occurs as Ra∗ is increased further to 90, with solution at Ra∗ = 80
as the initial conditions. The convective patterns starts becoming unsteady again as
Ra∗ is increased further to 100 using the solution at Ra∗ = 90 as the initial condition.
The oscillations of the average Sherwood number are less than 0.1% of the average,
as observed from figure 13. The power spectrum of the deviation of Shave from its time
mean value indicates that the oscillations are periodic with a dominant frequency of
0.0264 and a very small-amplitude harmonic, which is barely noticeable with the scale
used.

4.1.5. Effect of Lewis number

Variation of average Sherwood number with Lewis number is illustrated in figure 14
for N = 0.5 and Ra∗ = 5. The bifurcation diagram is constructed by changing the
Lewis number in steps of 10, where the solution obtained is used as the initial
condition for the next run. The average Nusselt number is close to unity and varies
between 1.0 and 1.002 in the Lewis number range investigated, which points to a
diffusive heat transfer. The flow transitions as a function of Lewis number are shown
in figure 15. Starting with the diffusive solution as initial conditions, convection starts
at 60 < Le < 70, with the resulting two-dimensional two-roll structure S34. However,
convection was found to persist down to Le ≈ 20 when Lewis number is decreased
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Figure 13. (a) Time variation of the average Sherwood number and (b) the power spectra of its
deviation from the time mean value for Ra∗ = 100, starting from the steady flow structure S27 at
Ra∗ = 90 (N = 0.5, Le = 10).
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Figure 14. Variations of average Sherwood number with Lewis number. Ra∗ = 5.0; N = 0.5.

in steps using the results obtained at the higher Lewis numbers, indicating that
the transition from the diffusive to the convective regime is subcritical. As a result,
several modes exist simultaneously below the onset threshold of convective motion.
Structures S34, S3 and S21 are found to exist below the threshold, which pass to a
diffusive state when Le is lowered below about 20.
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Figure 16. (a) Time variation of the average Sherwood number and (b) the power spectra of its
deviation from the time mean value for Le = 130, starting from the steady flow structure S12 at
Le = 120 (N = 0.5, Ra∗ = 5).

Starting with the two-roll structure S34 having Z2 × O2 symmetry and increasing
the Lewis number results in the three-roll structure S36 with D2 ×O2 symmetry. This
structure then bifurcates to Z2-symmetric structure S30 as Le is increased further.
When Le is increased from 226 to 227, a new structure, S28, is obtained from S30 as
a result of splitting of its largest and its smallest cells, where the diagonal symmetry
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is preserved. Another branch of solutions follow the path where S36 first bifurcates
to the four-roll structure S35 by gaining a translational symmetry in the y-direction
with the resulting symmetry group D2×O2 then to D4-symmetric structures S1 and S2
and finally to D2h-symmetric pattern S10 as Le is increased further. However, using a
stabilizing linear temperature gradient with zero concentration and velocity profiles
as initial conditions, convection starts at a Lewis number between 50 and 60, with
the resulting flow structure S12 having Z2 symmetry. This structure is steady up to
Le = 120 and oscillations set in at higher Lewis numbers. For Le = 130, oscillations
are periodic as revealed from the power spectrum of the average Sherwood number
at the bottom plate (figure 16). The spectrum consists of a main frequency of 0.018
and its harmonics. The oscillation amplitude of the average Sherwood number is only
about 4% of the mean. At a Lewis number of 135, small-amplitude oscillations are
superimposed on the periodic waveform as revealed from the power spectrum shown
in figure 17. For Le = 140, the oscillations amplitude is about the same as shown
in figure 18. However, the power spectrum consists of many frequencies with a main
frequency of 0.0196. At a Lewis number of 150, the amplitude of oscillations reach
to about 12% of the mean and the main frequency decreases to 0.00259, as shown
in figure 19. At a Lewis number of 160, the flow resumes back to the D4-symmetric
steady-flow structure S2 or to S14, having plane symmetry {e, sx} = Z2 with three
main and four smaller uprising plumes. This steady flow structure is stable up to
Le = 240 where oscillations start. Structure S14 bifurcates to another Z2-symmetric
structure, S15, with merging of its two smaller rolls as Lewis number is decreased
from 160 to 150. This branch then follows the path with Z2 symmetric patterns S12,
S21 and finally to a diffusive state as Le is decreased further.

The toroidal roll structure S3, with D4 symmetry, is stable in two different Lewis
number ranges at steady state. One is close to the convective threshold (Le = 20),
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where it bifurcates to the two-dimensional pattern S34 having Z2 × O2 symmetry.
The other range of stability of S3 is between Le = 90 and 150, which is obtained
by abruptly increasing the Lewis number to 100 from the diffusive state. At lower
Lewis numbers it evolves to two-dimensional three-roll structure S36 having D2 ×O2

symmetry. As the Lewis number is increased from 150 to 160, structure S3 undergoes
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a Hopf bifurcation to a periodic state having a frequency of 0.0859 and at Le = 170 it
bifurcates to D2 symmetric steady flow structure S9 by losing its plane and rotational
symmetries but retaining the diagonal symmetries sd and sd′ .

Structure S10, with D2h symmetry, has the highest mass transfer capability at high
Lewis numbers and is obtained from the bifurcation of D4-symmetric pattern S2
when Le is increased from 220 to 230. However, this structure loses its stability
for Le < 140 and bifurcates to S1 having D4 symmetry. Structure S1 is stable
over a wide range of Lewis numbers; namely for 30 6 Le 6 190, where it evolves
to S2 at the high end and to S3 at the lower end of the Lewis number range
through transcritical bifurcations, where its D4 symmetry is preserved in both cases.
Structure S30, which has a single diagonal symmetry, {e, sd} = Z2, also exists over
a large range of Lewis numbers (80 6 Le 6 226). It evolves to S28 having Z2

symmetry and S36 having D2×O2 symmetry at the higher and lower Lewis numbers,
respectively. The occurrence of other structures is limited to a narrower range of
Lewis numbers.

5. Conclusions
The onset of multiple three-dimensional double-diffusive flow patterns in a hori-

zontal rectangular porous cavity with opposing gradients of temperature and con-
centration in the fingering regime, where the solute gradient is destabilizing against
a stabilizing temperature gradient has been investigated numerically. Altogether 36
symmetric steady-flow structures have been identified and the transitions between
the solution branches determined for changes in buoyancy ratio, thermal Rayleigh
number and Lewis number.

Simulations were carried out starting with the diffusive solution and increasing the
related parameter to a point beyond which unsteady flow starts. However, structures
S12, S3 and S27 have been found to exhibit unsteady behaviour in some part of the
ranges investigated, whereas all other structures are steady. The three-roll structure
S12, having Z2 symmetry, follows the route steady, periodic, quasi-periodic, chaotic
and eventually evolves to the steady four-roll structure S30 or S2 as the buoyancy ratio
varies in the range 2 to 4, for Ra∗ = 0.5 and Le = 10. A similar behaviour is observed
for the same structure when the Lewis number is increased in steps of 10. However,
this time, the quasi-periodic state has not been detected in the above sequence of
transitions, possibly because of the large Lewis number intervals used. On the other
hand, the bifurcation sequence of structure S27 involves only steady periodic, and
then returns back to the original steady flow regime of the same structure, as Ra∗ is
changed in the range 60–90, for Le = 10 and N = 0.5.

When increasing buoyancy ratio, thermal Rayleigh number or Lewis number, all
transitions are to a higher branch of solutions, where the average Sherwood number
is higher. On the other hand, when decreasing any of the variables, the transitions are
to a lower solution branch. An exception to this behaviour occurs for the transition of
the non-symmetric structure S39. When Ra∗ is decreased from 90 to 80, structure S39
evolves to S10, which is on a higher solution branch, with higher average Sherwood
numbers. As a result, it is not possible to put forward a general statement saying that
the flow structures adopt the configuration, which maximize solute transport. The
Nusselt number is close to unity (1 6 Nu 6 1.3) for all the parameters investigated,
indicating a diffusion-dominated heat transfer.

No single structure was found to exist for all the buoyancy ratio, thermal Rayleigh
number or Lewis numbers investigated. However, structures S30, S1 and S10 have
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been found to exist in a relatively wider range of parameters and they have the
maximum mass transfer capacity. The occurrence of other structures is limited to
narrower ranges.
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Zhao, C., Mühlhaus, H. B. & Hobbs, B. E. 1998 Effects of geological inhomogeneity on high
Rayleigh number steady state heat and mass transfer in fluid saturated porous media heated
from below. Numer. Heat Transfer A 33, 415–431.


